Robust bayesian sensitivity analysis for case-control studies with uncertain exposure misclassification probabilities.

نویسندگان

  • Timothy Shin Heng Mak
  • Nicky Best
  • Lesley Rushton
چکیده

Exposure misclassification in case-control studies leads to bias in odds ratio estimates. There has been considerable interest recently to account for misclassification in estimation so as to adjust for bias as well as more accurately quantify uncertainty. These methods require users to elicit suitable values or prior distributions for the misclassification probabilities. In the event where exposure misclassification is highly uncertain, these methods are of limited use, because the resulting posterior uncertainty intervals tend to be too wide to be informative. Posterior inference also becomes very dependent on the subjectively elicited prior distribution. In this paper, we propose an alternative "robust Bayesian" approach, where instead of eliciting prior distributions for the misclassification probabilities, a feasible region is given. The extrema of posterior inference within the region are sought using an inequality constrained optimization algorithm. This method enables sensitivity analyses to be conducted in a useful way as we do not need to restrict all of our unknown parameters to fixed values, but can instead consider ranges of values at a time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

تعدیل اریبی نسبت شانس حاصل از طبقه‌بندی نادرست مواجهه‌ها با استفاده از روش‌های بیزی در بررسی عوامل محیطی مرتبط با سرطان ریه

Background & Objective: Inability to measure exact exposure in epidemiological studies is a common problem in many studies, especially cross-sectional studies. Depending on the extent of misclassification, results may be affected. Existing methods for solving this problem require a lot of time and money and it is not practical for some of the exposures. Recently, new methods have been proposed ...

متن کامل

Is probabilistic bias analysis approximately Bayesian?

Case-control studies are particularly susceptible to differential exposure misclassification when exposure status is determined following incident case status. Probabilistic bias analysis methods have been developed as ways to adjust standard effect estimates based on the sensitivity and specificity of exposure misclassification. The iterative sampling method advocated in probabilistic bias ana...

متن کامل

Case-Control Studies with Jointly Misclassified Exposure and Confounding Variables

The issue of 2 × 2 × 2 case-control studies is addressed when both exposure and confounding variables are jointly misclassified. Two scenarios are considered: the classification errors of exposure and confounding variables are independent or not independent. The bias-adjusted cell probability estimates which account for the misclassification bias are presented. The effect of misclassification o...

متن کامل

Bayesian sample size determination for case-control studies when exposure may be misclassified.

Odds ratios are frequently used for estimating the effect of an exposure on the probability of disease in case-control studies. In planning such studies, methods for sample size determination are required to ensure sufficient accuracy in estimating odds ratios once the data are collected. Often, the exposure used in epidemiologic studies is not perfectly ascertained. This can arise from recall ...

متن کامل

Bayesian adjustment for exposure misclassification in case-control studies.

Poor measurement of explanatory variables occurs frequently in observational studies. Error-prone observations may lead to biased estimation and loss of power in detecting the impact of explanatory variables on the response. We consider misclassified binary exposure in the context of case-control studies, assuming the availability of validation data to inform the magnitude of the misclassificat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The international journal of biostatistics

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2015